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A. Introduction

The primary purpose of AASERT Grant F49620-97-1-0440 was to support the research
efforts first of Ph.D. degree candidate Scott Applequist (who received his degree in 1999), and
later of graduate students Gregory Gahrs ind Christopher Werner. Two research components
were supported as complementary researcii to that on AFOSR Grant F49620-96—1-0172.
These were as follows:

B. Application of Nicolaenco-Mahalov Method to Meteorological Equations

This research was an effort to extend to a broader class of meteorological prediction problems
an averaging method that Basil Nicolaenco and Alex Mahalov of Arizona State University
previously applied to the shallow water equations under a separate AFOSR contract. Their
method applied to that problem yields a nonlinear equation for the evolution of the low
frequency rotational wave (including the full effects of the inertia—gravity waves) and linear
equations with variable coefficients for the high frequency inertia—gravity waves (including the
full effects of nonlinear interactions with the rotational mode). Numerous discussions with Drs.
Nicolaenco and Mahalov led us to believe that this method had great potential for application to
more realistic meteorological problems (e.g., the Lorenz equations and the more general forecast
equations for baroclinic waves in a stably stratified fluid). Accordingly, with the support of
AASERT Grant F49620-97-1-0440 and AFOSR Grant F49620-96-1-0172 we set out to




apply the averaging method to a heirarchy of important meteorological problems, starting with
the equations governing the chaotic Lorenz attractor.

Our motivation for beginning with the Lorenz equations was that they have certain important
properties in common with the equations governing large—scale atmospheric motions (viz.
instability and behavior on both long and short time scales). If we could get something mean—
ingful by applying the averaging technique to the Lorenz equations, it would seem reasonable to
proceed next with an attempt to derive equations governing the slow (10—4G day) fluctuations
that determine intraseasonal atmospheric behavior. ‘

Our original reason for believing that the methodology might work on the Lorenz equations is
that the solution of these equations describes fast oscillations which continue for a long time
around one equilibrium point before shifting to oscillate around the other equilibrium point. We
conceived of the fast oscillations as being the ones over which we could average in order to get
equations governing the longer term oscillation between attractor basins.

Unfortunately, our research lead us to the conclusion that the averaging method is not applicable
to the Lorenz equations and, for the same reason, cannot be applied successfully to more
general weather forecast problems. The simplest way to understand why this is so is to
recognize that, while the procedure works on small oscillations from equilibrium in a single
basin of attraction, it cannot work in the case of an attractor, such as the Lorenz attractor, which
consists of motions around two different equilibrium points in planes that are at an angle to each
other in phase space. We can linearize the equations about either of these equilibria, but not
both at the same time. As soon as the nonlinear trajectory leaves one basin of attraction, the
linearization and the averaging break down. To be more specific, suppose we linearized the
Lorenz equations

dX/dt=-cX+0Y (1)
dY/dt= 1 X-Y-XZ (2)
dZ/dt= -bZ+X Y (3)

around the marginal equilibrium point at which the flow bifurcates from steady convection to
oscillatory convection. This point is defined by Lorenz as

Xo=Yo =% [b(r-D)/2; Z,=r- 1. 4)

with r > 1. To make matters a little more concrete, we used ¢ = 16, b = 4, r = 33.4545....
These numerical values put us right at the bifurcation point. Given a small perturbation X', Y',
Z' around one of the equilibrium points [say, for example, the one using the plus sign in
equation (4)], the numerical solution describes a periodic orbit (limit cycle) around that point.
Given a large perturbation, the solution describes an attractor going back and forth between the
“two wings of the Lorenz butterfly. Just as in the case of unstable convection, the solution
oscillates around one equilibrium point for a time that is long in comparison with the orbital




period, and then swings over to the other attractor basin and oscillates around the other
equilibrium point for a long time before swinging back again.

The linearized system of equations is

dX/dt=-0c X +0Y (5)
dY'fdt = -Z) X - Y - X, Z (6)
dZ'/dt = Yo X'+ X, Y' - b Z. @)

The Lorenz equations can, therefore, be written in the form

dX'/dt = A X'+ N, - (8)

where the vector X' = (X', Y', Z"), A is the matrix of coefficients in equations (5)—(7) and N
represents the nonlinear terms. As Dr. Nicolaenco suggested, we performed a change of basis
to an eigenvector basis, letting X' =T V, where the vector V = (U,V,W) and T is the matrix
of the eigenvectors

€ €12 €13 .
T = e, € €3 9
€3 €3, €33

Here e) = (e11, €21, €31)" is the eigenvector associated with the real eigenvalue and e; = (e,

€22, €32)'", and e3 = (ey3, €23, €33) are the real and imaginary parts, respectively, of one of

the complex eigenvectors (the other eigenvector being the complex ‘conjugate of this or.).. This
leads to the transformed system of equations of the form

n 0 0lful .
av_1 o 0 o [|V|+N. (10)
t 0 - o ||W

where, in our case, | = — 21.0 and ® = 14.0648. The nonlinear terms have the form

(
all+bUV+cV+dUW+e VW +FW

gU +hUV+jV+kUW+IVW+mW |, (11)
nU+pUV+qV+r UW+s VW+tW
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where a = —.093500, b = +.280504, ¢ = +.094720, d = —.194114, e = +.065622,
f = —.059063, g = —.386366, h = +.035278, j = +.047078, k = +.450170,

1 =+ .238669, m = + .219699, n = .572133, p = — .786633, q = + .294723,

r =+ .151721, s = — .374660, t = — .022278.

If we let
n 0 0
L=|0 0 ® (12)
0 - 0
we may rewrite the transformed equations in the form
dV/dt=LV+ N. (13)

Frequency analysis of the numerical solution of the original Lorenz equations reveals that X. Y
and Z each contain both high and low frequencies. When we integrate (13) with a small initial
perturbation, only V and W contain high frequencies. But, when we integrate this same system
of equations with an initial perturbation of moderate size, all three components display high
frequencies, as in the solution of the original Lorenz equations. An assumed solution of the
form

V(t) = elT v(1) (14)

where V(t) = (U,V,W) and v(1) = (0, B, Y), postulates, however, that only V and W contain
high frequencies. It is easy to verify this by substituting the matrix

1 0 0
e = 0 cos ot sinwt | . (15)
0 —sin ¢ cos Wt

into (14), in which case it becomes clear that the assumed solution requires that U(t) have only
low frequency components. Since the results of the numerical integration of (13) with an initial
perturbation of moderate amplitude show that U(t) contains high frequencies, the assumed
solution cannot be valid for other than small perturbations around one of the equilibrium points.
In order to verify this analysis, we proceeded to go through the formalism of assuming a
solution of the form (14) and applying the averaging method. When we did this, the equations
governing the slow time variables o, B and 7y took the form




@ do+bor + 2f + dy (16)
Z—?:éa[}+fay (17)
%:gaﬁ+ﬁay. (18)

Here @ = -21.00000, b =-& =—h =-093500, & =d =017829, f = -3 = .618402.
The algebra was accomplished using a symbolic algebra computer program and many of the
parts were checked by hand. '

When we solved these equations numerically subject to an initially very small perturbation, the
solution tended toward constant values of o, B and Yy, which corresponds to a limit cycle
around the fixed point X,, Yo, Z,, as it should. The implication is that the fast oscillation
corresponding to the matrix L takes place around a fixed point that corresponds to our original
equilibrium solution [the one corresponding to the plus sign in equation (4)].

Our original hope was that when we solve the same equations with a moderate—size
perturbation, we would get.a solution for o, B, y that would describe the longer term tendency
for the trajectory to shift from one wing of the Lorenz butterfly to the other. Instead, the pro—
cedure fails and the solution blows up, as anticipated from the above discussion of equations
(13)=(15). Our interpretation is that, as soon as the initial perturbation is large enough to carry
the trajectory outside of the basin of attraction of one of the equilibrium points, the averaging
procedure is no longer valid. In particular, v(t).in equation (14) no longer describes the slow
time behavior because the products of terms involving eLT and e-LT no longer average to
constants. ’

C. Statistical Modification of Numerical Forecasts

It has been demonstrated by the National Weather Service (NWS) (e.g., Dagastro, V.J. and J.P
Dallavalle, 1957) that forecasts by numerical prediction models can be improved by applying
statistical corrections to the model output. The methodology is called model output statistics
(MOS). All work prior to that reported here was done using linear regression. Owing to the
highly nonlinear nature of atmospheric behavior, it seemed reasonable to explore the possibility
that the use of nonlinear statistical techniques could yield greater improvements in weather
forecasting. Accordingly, with the partial support of AASERT Grant F49620-97-1-0440, as
well as a grant from the National Science Foundation, we set out to test the skill of a number of
different statistical methodologies and compare the results with those of linear regression.

Specifically, we investigated the use of NGM analyses over the four—year period December
1992 through March 1996 (NCAR archive ds069.5). We used stepwise regression to screen
variables from a large pool of potential predictors consisting of those generally used by NWS in
MOS predictions, plus predictors that we added based on dynamical considerations and on the
experience of Hall (1996), who demonstrated better than average success over a several year
period at Dallas/Ft Worth. As a baseline test of skill for comparison with all other methods, we
used the same linear regression procedures that are followed by the National Weather Service




with predictors selected from the larger pool by stepwise regression. We compared the results
of applying a variety of linear, quasi-linear and nonlinear prediction methods to the prediction
of the probability of 24-hour accumulated precipitation excéeding .01, .05 and .10 inches
during the cold season.

The methods we tested include linear regression, discriminant analysis, neural networks, logistic
regression and a classifier system. Logistic regression, also known as generalized linear
modeling, can be considered to be a quasi—linear version of generalized additive modeling. It
can also be considered to be a degenerate case of a neural network with no hidden layer, since
the transform function used is similar to the "squashing” function in a neural net. The classifier
system is a method of artificial intelligence that uses a training set of data to determine "if—then”
rules relating a predictand to a prescribed set of predictors, when the number of rules to be
learned is specified. These rules are conditions, such as "if the magnitude of a given predictor

~exceeds a certain threshold, increase the prediction of precipitation probability by a given

amount.” In order to determine the rules, we used a genetic algorithm, which is a technique for
searching for the optimal set of parameters.

We used cross validation in which the relationships between predictors and predictand were
determined by training each methodology on three of the four years of data and testing the
formulas derived in this way on the data for the remaining year (which then represented an
independent data set). For each station, we did this four times, using a different year as the
independent data set. To measure the degree of success of each of these probabilistic
quantitative precipitation forecasts (PQPFs), we used the Brier Skill Score (BSS), which gives
the percent improvement of the prediction over climatology.

We found that we could effectively reduce the pool of potential predictors without loss of skill
by using layer averaged values of the predictor variables. This led to a more robust set of
variables that showed up as the best predictors at many stations and for all four years
investigated by cross validation. Publithed NWS reports reveal that it is customary in
developing MOS equations to include ir the set of potential predictors variables measured at
individual atmospheric levels (say, for example, the specific humidity, the temperature, various
advections, etc. at 1000, 950, 850, 700 and 500 mb). When we applied this methodology, we
found that the values of certain variables at one elevation were chosen by stepwise regression as
the best predictors for one winter, and that the values of the same variables at a different
elevation were chosen as the best predictors for another winter. Similar differences occurred
from one station to the next during the same winter. We felt that this is not a robust result and
would not hold up in future tests with independent data, but that the physical variables chosen
as predictors integrated over a substantial atmospheric layer and over a 24-hour period would
be more robust predictors. We tested this hypothesis and found that, indeed, predictive skill did
not decrease when we used the much smaller set of vertically averaged variables. The same
predictors can then be used at many stations and for all winters.

We trained the 5 different methods as discussed above and made probability forecasts of 24—
hour precipitation accumulation exceeding .01", .05" and .10" at 154 stations in the eastern half
of the United States from Abiline,Texas to Portland, Maine. We found that we could get
respectable predictions with no more than two or three predictors at most stations and up to




seven predictors at a few stations. Although adding more predictors increases the skill of
predictions within the dependent data set, it decreases skill when applied to an independent data
set. In the following table we compare the mean Brier Skill Scores averaged over all 62 stations
obtained using the different statistical methods. It is clear from the table that the scores increase
as we progress to larger precipitation amounts, with a much more significant increase occurring
between .01" and .05" than between .05" and .10". The table reveals, too, that logistic
regression exhibits greater skill than linear regression at all three thresholds, and that
discriminant analysis and the classifier system exhibit greater skill than linear regression at the
higher thresholds.

Table 2. Comparison of Brier Skill Scores for five methods and three thresholds

Precipitation Threshold

01" 08" 10"

neural network .339 444 473
classifier system .368 472 .505
linear regression | .382 . .456 .487
discriminant analysis 372 .482 .514
logistic regression .393 .496 521
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